knrt.net
当前位置:首页 >> ∫﹙x2%Cosx+E^x﹚Dx,求不定积分 >>

∫﹙x2%Cosx+E^x﹚Dx,求不定积分

设I=∫e^x cosxdx =∫cosxde^x =e^xcosx-∫e^xdcosx =e^xcosx+∫e^xsinxdx =e^xcosx+∫sinxde^x =e^xcosx+sinxe^x-∫e^xdsinx =e^xcosx+e^xsinx-∫e^xcosx dx =e^xcosx+e^xsinx-I 2I=e^xcosx+e^xsinx 所以 原式=1/2 (e^xcosx+e^xsinx)+C

如图

使用分部积分法两次即可,步骤如下: ∫e^(-x)cosxdx=-e^(-x)cosx-∫[-e^(-x)(cosx)']dx=-e^(-x)cosx+∫[-e^(-x)sinx]dx =-e^(-x)cosx+e^(-x)sinx-∫e^(-x)(sinx)'dx 所以∫e^(-x)cosxdx=1/2[-e^(-x)cosx+e^(-x)sinx]+C

解:此题可用分步积分进行解答 ∫ e^(-x)cosxdx = -e^(-x)cosx - ∫ e^(-x)sinxdx = -e^(-x)cosx + e^(-x)sinx -∫ e^(-x)cosxdx 即 原式=[ -e^(-x)cosx + e^(-x)sinx ]/2 =(sinx-cosx)*e^(-x)/2 祝您学习愉快

分部积分 ∫e^xsinxdx=∫sinxde^x =sinx*e^x-∫e^xdsinx =sinx*e^x-∫e^xcosxdx =sinx*e^x-∫cosxde^x =sinx*e^x-cosx*e^x+∫e^xdcosx =sinx*e^x-cosx*e^x-∫e^xsinxdx 所以2∫e^xsinxdx=sinx*e^x-cosx*e^x 所以∫e^xsinxdx=e^x(sinx-cosx)/2

这是分部积分法的一种类型. ∫e^(-x) cosx dx =-∫e^(-x) dsinx =e^(-x)sinx+∫e^(-x) sinx dx =e^(-x)sinx-∫e^(-x) dcosx =e^(-x)sinx-e^(-x)cosx-∫e^(-x) cosx dx 移项,得∫e^(-x) cosx dx=1/2×e^(-x)(sinx-cosx)+C 同理,∫e^(-x) si...

原式=∫xdsinx =xsinx-∫sinxdx =xsinx+cosx+C

这是分部积分法的一种类型. ∫e^(-x) cosx dx =-∫e^(-x) dsinx =e^(-x)sinx+∫e^(-x) sinx dx =e^(-x)sinx-∫e^(-x) dcosx =e^(-x)sinx-e^(-x)cosx-∫e^(-x) cosx dx 移项,得∫e^(-x) cosx dx=1/2×e^(-x)(sinx-cosx)+C 同理,∫e^(-x) sinx...

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com