knrt.net
当前位置:首页 >> ∫1/√(x2%1)Dx怎么做啊? >>

∫1/√(x2%1)Dx怎么做啊?

∫√(1+x²) dx=√(1+x²) *x-∫x*d√(1+x²) =√(1+x²) *x-∫x*x/√(1+x²)dx=√(1+x²) *x-∫(x²+1-1)/√(1+x²)dx=√(1+x²) *x-∫[√(x²+1)-1/√(1+x²)]dx=√(1+x²) *x-∫√(x²+1)dx+∫1/√(1+x...

令x = tany,dx = sec²y dy,y∈(- π/2,π/2) ∫ 1/√(1 + x²) dx = ∫ 1/√(1 + tan²y) * sec²y dy = ∫ 1/|secy| * sec²y dy = ∫ secy dy,在y∈(- π/2,π/2)上secy > 0 = ln| secy + tany | + C = ln| tany + √(1 + tan...

令x = tan z,dx = sec² z dz ∫ 1/(1 + x²) dx = ∫ 1/(1 + tan² z) * sec² z dz = ∫ 1/sec² z * sec² z dz = ∫ dz = z + C = arctan(x) + C,这是反三角正切函数 这积分是个基本公式,记下就好哟

如图

令√(x-1)=t,那么x=t²+1 从而dx=2tdt 代入原式 =∫2t/t dt =2∫dt =2t+c =2√(x-1)+c 很高兴为您解答,祝你学习进步>the1900】团队为您答题。 有不明白的可以追问!如果您认可我的回答。 请点击下面的【选为满意回答】按钮,谢谢! 如果有...

可以用三角换元法,自己试下,我给你一种不一样的解答吧。 以上,请采纳。

因为被积函数是偶函数,所以最后得到的原函数必定是奇函数。根据对称性,这里首先考虑x>0时的情况。 根据三角函数的基本关系,设x=csc u=1/sin u,因为x>1,所以令u∈(0,π/2)。 那么dx=-cos udu/sin² u, sqrt(x^2-1)=sqrt(1/sin² u-1)...

进行凑微分即可 得到∫√(1+x^2) xdx =1/2 *∫√(1+x^2) dx^2 =1/2 * 2/3 *(1+x^2)^(3/2) +C =1/3 *(1+x^2)^(3/2) +C,C为常数

用分步积分法:Sln(1+x^2)dx=xlnx-Sxd(1+x^2)=xln(1+x^2)-2S[1-1/(1+x^2)]dx=xln(1+x^2)-2x-2arctanx+C。

如图

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com