knrt.net
当前位置:首页 >> ∫xE^1/2xDx的答案是 >>

∫xE^1/2xDx的答案是

使用分部积分法,得到 ∫ x *e^(1/2x) dx =∫ 2x *e^(1/2x) d(1/2x) =∫ 2x d[e^(1/2x)] =2x *e^(1/2x) -∫ 2e^(1/2x) dx =2x *e^(1/2x) -∫ 4e^(1/2x) d(1/2x) =2x *e^(1/2x) - 4e^(1/2x) +C,C为常数

字数补丁

原式=∫(0,1)1/2xe^2xd2x =∫(0,1)1/2xde^2x =1/2xe^2x(0,1)-1/2∫(0,1)e^2xdx =1/2xe^2x(0,1)-1/4∫(0,1)e^2xd(2x) =(1/2xe^2x-1/4e^2x)(0,1) =(1/2*e²-1/4*e²)-(0-1/4) =(e²+1)/4

分部积分,一次就解决

∫[1→e] xe^(-2x) dx =(-1/2)∫[1→e] x de^(-2x) 分部积分 =-(1/2)xe^(-2x) + (1/2)∫[1→e] e^(-2x) dx =-(1/2)xe^(-2x) - (1/4)e^(-2x) |[1→e] =-(1/2)e*e^(-2e) - (1/4)e^(-2e) + (1/2)e⁻² + (1/4)e⁻² =(-1/4)e^(-2e)(2e+1...

∫xe^(-2x+1)dx =-1/2∫xde^(-2x+1) =-1/2xe^(-2x+1)+1/2∫e^(-2x+1)dx =-1/2xe^(-2x+1)-1/4e^(-2x+1)+C

∫xe^2xdx =1/2∫xe^2xd2x =1/2∫xde^2x =(1/2)xe^2x-1/2∫e^2xdx =(1/2)xe^2x-1/4∫e^2xd2x =(1/2)xe^2x-(1/4)e^2x+C ∫(1,0)dx/2+√x 令√x=a x=a² dx=2ada x=1,a=1 x=0,a=0 原式=∫(1,0)ada/(2+a) =∫(1,0)(2+a-2)da/(2+a) =∫(1,0)[1-2/(2+a)]...

这里就是简单的凑微分, 显然 d(e^x)=e^x dx 那么同样 d(e^2x)=e^2x d2x 所以在这里得到 1/2 *∫x e^2x d2x=1/2 *∫ xd(e^2x)

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com