knrt.net
当前位置:首页 >> ∫xE^2xDx求积分 >>

∫xE^2xDx求积分

∫xe^2xdx,分部积分 u=x v=1/2e^2x 则=1/2xe^2x-∫1/2e^2xdx =1/2xe^2x-1/2∫e^2xdx =1/2xe^2x-1/4e^2x+c

使用分部积分法即可,得到 ∫xe^2xdx =∫0.5xe^2xd2x =0.5∫x d(e^2x) =0.5x *e^2x -0.5∫e^2xdx =0.5x *e^2x -0.25e^2x +C,C为常数

1/2∫e^2xdx =1/4∫e^2xd2x 是因为dx变为d2x了 dx=(1/2)d2x 1/2∫e^2xdx =1/2∫e^2x(1/2)d2x =1/4∫e^2xd2x

使用分部积分法,得到 ∫ x *e^(1/2x) dx =∫ 2x *e^(1/2x) d(1/2x) =∫ 2x d[e^(1/2x)] =2x *e^(1/2x) -∫ 2e^(1/2x) dx =2x *e^(1/2x) -∫ 4e^(1/2x) d(1/2x) =2x *e^(1/2x) - 4e^(1/2x) +C,C为常数

原式=∫(0,1)1/2xe^2xd2x =∫(0,1)1/2xde^2x =1/2xe^2x(0,1)-1/2∫(0,1)e^2xdx =1/2xe^2x(0,1)-1/4∫(0,1)e^2xd(2x) =(1/2xe^2x-1/4e^2x)(0,1) =(1/2*e²-1/4*e²)-(0-1/4) =(e²+1)/4

您好。关于这一道题,想和您说一下我的看法。 相信您也清楚,这个定积分很容易直接求出来。看到这个定积分,我们知道它是好求的,既然是好求的,直接求出来就是正常的思路。 现在问题是,题目要求你估计。这与我们正常的思路是不一样的。题目要...

分部积分,一次就解决

求积分? 换元公式法

答; (0→1) ∫ xe^(-x)dx =(0→1) - ∫ x d[e^(-x)] =(0→1) -xe^(-x)+∫ e^(-x) dx =(0→1) -xe^(-x)-e^(-x) =-1/e-1/e-(0-1) =1-2/e

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com